Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Atmospheric Environment ; : 119821, 2023.
Artigo em Inglês | ScienceDirect | ID: covidwho-2315454

RESUMO

Exposure to PM2.5 (particles with an aerodynamic diameter equal to or less than 2.5 μm) is associated with a variety of negative health outcomes. Measurements from sparsely situated air quality monitoring stations (AQMSs) may be inappropriate to represent real PM2.5 exposures, particularly in traffic-related environments. In this study, efforts were made to characterize spatiotemporal variation of PM2.5 pollutions over Shenzhen, China from July 2019 to June 2020 using combined mobile (on-road PM2.5) and stationary (AQMS PM2.5) measurements. Monthly-average concentrations of on-road PM2.5 ranged from 10.4 ± 6.1 to 47.3 ± 23.9 μg/m3, and showed consistent trend with AQMS PM2.5 concentrations which ranged from 8.3 ± 3.1 to 37.2 ± 12.9 μg/m3. On-road PM2.5 and AQMS PM2.5 concentrations dropped by 54.6% and 30.2% in February 2020, probably due to the low anthropogenic emissions during the period of Spring Festival and COVID-19 lockdown. Weekend effect on both on-road and AQMS PM2.5 concentrations was not noticeable. Relative high on-road PM2.5 concentrations were observed during morning and evening rush hours. An "elevated concentration” concept was applied to estimate the influence of emissions on PM2.5 exposures. Elevated concentrations showed strong diurnal and spatial variation, and was about 5.0 μg/m3 on-average. Mappings of on-road PM2.5 and elevated concentrations confirmed the heterogeneity of spatial distribution of PM2.5 exposures in Shenzhen where PM2.5 pollutions were more severe in western and northern areas. Our results highlight the elevated PM2.5 exposures in traffic-related environments, and the inequity in urban exposure levels and health.

2.
J Med Virol ; 95(1): e28407, 2023 01.
Artigo em Inglês | MEDLINE | ID: covidwho-2246206

RESUMO

To control the ongoing COVID-19 pandemic, a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been developed. However, the rapid mutations of SARS-CoV-2 spike (S) protein may reduce the protective efficacy of the existing vaccines which is mainly determined by the level of neutralizing antibodies targeting S. In this study, we screened prevalent S mutations and constructed 124 pseudotyped lentiviral particles carrying these mutants. We challenged these pseudoviruses with sera vaccinated by Sinovac CoronaVac and ZF2001 vaccines, two popular vaccines designed for the initial strain of SARS-CoV-2, and then systematically assessed the susceptivity of these SARS-CoV-2 variants to the immune sera of vaccines. As a result, 14 S mutants (H146Y, V320I + S477N, V382L, K444R, L455F + S477N, L452M + F486L, F486L, Y508H, P521R, A626S, S477N + S698L, A701V, S477N + T778I, E1144Q) were found to be significantly resistant to neutralization, indicating reduced protective efficacy of the vaccines against these SARS-CoV-2 variants. In addition, F486L and Y508H significantly enhanced the utilization of human angiotensin-converting enzyme 2, suggesting a potentially elevated infectivity of these two mutants. In conclusion, our results show that some prevalent S mutations of SARS-CoV-2 reduced the protective efficacy of current vaccines and enhance the infectivity of the virus, indicating the necessity of vaccine renewal and providing direction for the development of new vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Anticorpos Antivirais , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Pandemias , Anticorpos Neutralizantes , Mutação
3.
J Med Virol ; 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: covidwho-2236823

RESUMO

Increasing evidence supports inter-species transmission of SARS-CoV-2 variants from humans to domestic or wild animals during the ongoing COVID-19 pandemic, which is posing great challenges to epidemic control. Clarifying the host range of emerging SARS-CoV-2 variants will provide instructive information for the containment of viral spillover. The spike protein (S) of SARS-CoV-2 is the key determinant of receptor utilization, and therefore amino acid mutations on S will probably alter viral host range. Here, to evaluate the impact of S mutations, we tested 27 pseudoviruses of SARS-CoV-2 carrying different spike mutants by infecting Hela cells expressing different angiotensin-converting enzyme 2 (ACE2) orthologs from 20 animals. Of these 27 pseudoviruses, 20 bear single mutation and the other 7 were cloned from emerging SARS-CoV-2 variants, including D614G, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (B.1.429), and Mu (B.1.621). Using pseudoviral reporter assay, we identified that the substitutions of T478I and N501Y enabled the pseudovirus to utilize chicken ACE2, indicating potential infectivity to avian species. Furthermore, the S mutants of real SARS-CoV-2 variants comprising N501Y showed significantly acquired abilities to infect cells expressing mouse ACE2, indicating a critical role of N501Y in expanding SARS-CoV-2 host range. In addition, A262S and T478I significantly enhanced the utilization of various mammal ACE2. In summary, our results indicated that T478I and N501Y substitutions were two S mutations important for receptor adaption of SARS-CoV-2, potentially contributing to the spillover of the virus to many other animal hosts. Therefore, more attention should be paid to SARS-CoV-2 variants with these two mutations.

4.
Journal of Power Sources ; 559:232625, 2023.
Artigo em Inglês | ScienceDirect | ID: covidwho-2180902

RESUMO

A photocathode-microbial electrochemical coupling system (PC-MFC) using black phosphorus-doped titanium dioxide nanobelt (BP/TB) as a photocatalyst is constructed for the degradation of hydroxychloroquine (HCQ, used to treat COVID-19). The degradation efficiency of HCQ (100 mg/L) in coupling system is 73.7% within 8 h, higher than that of photocatalysis (69.5%), MFC (25.6%), and adsorption (9.6%). The photocathode coupling facilitates subsequent bioelectric treatment, resulting in complete degradation of HCQ (100 mg/L) within 96 h in PC-MFC, much higher than in MFC (51.1%). Illumination of PC-MFC significantly increases the cathodic abundance of Pseudomonadales ord. (from 1.83% to 66.30%), accumulates biomass, improves the electrochemical behaviors of photocathode and bioanode, and finally increases the maximum power from 241 to 280 mW/m2. The electron transfer pathways depende on nicotinamide adenine dinucleotide dehydrogenase, succinate dehydrogenase and terminal oxidase. The coupled system enhances the dechlorination reduction of HCQ and reduces the biotoxicity of its degradation pathway. PC-MFC represents a new strategy for the treatment and energy recovery of refractory organic compounds in wastewater.

5.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: covidwho-2188251

RESUMO

Genomic recombination is an important driving force for viral evolution, and recombination events have been reported for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the Coronavirus Disease 2019 pandemic, which significantly alter viral infectivity and transmissibility. However, it is difficult to identify viral recombination, especially for low-divergence viruses such as SARS-CoV-2, since it is hard to distinguish recombination from in situ mutation. Herein, we applied information theory to viral recombination analysis and developed VirusRecom, a program for efficiently screening recombination events on viral genome. In principle, we considered a recombination event as a transmission process of ``information'' and introduced weighted information content (WIC) to quantify the contribution of recombination to a certain region on viral genome; then, we identified the recombination regions by comparing WICs of different regions. In the benchmark using simulated data, VirusRecom showed a good balance between precision and recall compared to two competing tools, RDP5 and 3SEQ. In the detection of SARS-CoV-2 XE, XD and XF recombinants, VirusRecom providing more accurate positions of recombination regions than RDP5 and 3SEQ. In addition, we encapsulated the VirusRecom program into a command-line-interface software for convenient operation by users. In summary, we developed a novel approach based on information theory to identify viral recombination within highly similar sequences, providing a useful tool for monitoring viral evolution and epidemic control.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teoria da Informação , Filogenia , Recombinação Genética
7.
Front Microbiol ; 13: 895741, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1952425

RESUMO

Deltacoronavirus (DCoV) is a genus of coronavirus (CoV) commonly found in avian and swine, but some DCoVs are capable of infecting humans, which causes the concern about interspecies transmission of DCoVs. Thus, monitoring the existence of DCoVs in animals near communities is of great importance for epidemic prevention. Black-headed gulls (Chroicocephalus ridibundus) are common migratory birds inhabiting in most urban and rural wetlands of Yunnan Province, China, which is a typical habitat for black-headed gulls to overwinter. Whether Yunnan black-headed gulls carry CoV has never been determined. In this study, we identified three strains of DCoVs in fecal samples of Yunnan black-headed gulls by reverse-transcriptional PCR and sequenced their whole genomes. Genomic analysis revealed that these three strains shared genomic identity of more than 99%, thus named DCoV HNU4-1, HNU4-2, and HNU4-3; their NSP12 showed high similarity of amino acid sequence to the homologs of falcon coronavirus UAE-HKU27 (HKU27), houbara coronavirus UAE-HKU28 (HKU28), and pigeon coronavirus UAE-HKU29 (HKU29). Since both HKU28 and HKU29 were found in Dubai, there might be cross-border transmission of these avian DCoVs through specific routes. Further coevolutionary analysis supported this speculation that HNU4 (or its ancestors) in black-headed gulls originated from HKU28 (or its homologous strain) in houbara, which was interspecies transmission between two different avian orders. In addition, interspecies transmission of DCoV, from houbara to falcon, pigeon and white-eye, from sparrow to common-magpie, and quail and mammal including porcine and Asian leopard cat, from munia to magpie-robin, was predicted. This is the first report of black-headed gull DCoV in Asia which was highly homolog to other avian DCoVs, and the very "active" host-switching events in DCoV were predicted, which provides important reference for the study of spread and transmission of DCoVs.

8.
Front Public Health ; 10: 890261, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1903231

RESUMO

Purpose: To report the design and baseline data of a 3-year cohort study in Beijing Pinggu District primary school students in China after COVID-19. Methods: Noncycloplegic and cycloplegic spherical equivalent refraction (SER) were measured, ocular biometry, including the axial length (AL), anterior chamber depth (ACD) and corneal power (CP), were collected before cycloplegia. Corneal radius (CR), AL-to-CR ratio, and lens power (LP) were calculated. Results: Among the 4,806 (89.1%) eligible students (51.5% male), the prevalence of emmetropia, myopia, mild hyperopia, and mild-to-high hyperopia was 12.8, 30.8, 53.0, and 3.3% after cycloplegia, respectively. Myopia increased from 2.5% in 6- to 71.6% in 12-year-old students, with 9- and 10-year-olds showing the most prominent increases. The median of cycloplegic SER was 0.50 (IQR = 1.63), and the noncycloplegic SER was -0.38 D (IQR = 1.50), which is more negative than the cycloplegic refraction. The mean AL increased with age, from 22.46 ± 0.70 mm to 24.26 ± 1.07 mm. The ACD increased from 3.38 ± 0.28 mm to 3.70 ± 0.30 mm, and the AL-to-CR ratio increased from 2.91 ± 0.08 to 3.12 ± 0.13 between 6- and 12-year-old students. AL, CR and LP explained the SER variance with R2 of 86.4% after adjusting the age and gender. Conclusions and Relevance: The myopia prevalence since emergence of COVID-19 rapidly increased from 6- to 12-year primary school Chinese children, especially after 7 years of age. The non-cycloplegia SER overestimated the prevalence of myopia, and the cycloplegic SER is a more accurate and reliable method to assess the prevalence of refractive status.


Assuntos
COVID-19 , Hiperopia , Miopia , Pequim/epidemiologia , COVID-19/epidemiologia , Criança , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Hiperopia/epidemiologia , Masculino , Midriáticos , Miopia/epidemiologia , Instituições Acadêmicas , Estudantes
10.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.04.11.487828

RESUMO

Increasing evidence supports inter-species transmission of SARS-CoV-2 variants from human to domestic or wild animals during the ongoing COVID-19 pandemic, which is posing great challenges to epidemic control. Clarifying the host range of emerging SARS-CoV-2 variants will provide instructive information for the containment of viral spillover. The spike protein (S) of SARS-CoV-2 is the key determinant of receptor utilization, and therefore amino acid mutations on S will probably alter viral host range. Here, in order to evaluate the impact of S mutations, we constructed 20 Hela cell lines stably expressing ACE2 orthologs from different animals, and prepared 27 pseudotyped SARS-CoV-2 carrying different spike mutants, among which 20 bear single mutation and the other 7 were cloned from emerging SARS-CoV-2 variants, including D614G, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.135), Lambda (B.1.429) and Mu (B.1.525). Using pseudoviral reporter assay, we identified that the substitutions of T478I and N501Y enabled the pseudovirus to utilize chicken ACE2, indicating potential infectivity to avian species. Furthermore, the S mutants of real SARS-CoV-2 variants comprising N501Y showed significantly acquired abilities to infect cells expressing mouse ACE2, indicating a critical role of N501Y in expanding SARS-CoV-2 host range. In addition, A262S and T478I significantly enhanced the utilization of various mammals ACE2. In summary, our results indicated that T478I and N501Y substitutions were two S mutations important for receptor adaption of SARS-CoV-2, potentially contributing to spillover of the virus to many other animal hosts. Therefore, more attention should be paid to SARS-CoV-2 variants with these two mutations.


Assuntos
COVID-19
11.
Emerg Microbes Infect ; 11(1): 1010-1013, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1750052

RESUMO

Equine coronavirus (ECoV) was first identified in the USA and has been previously described in several countries. In order to test the presence of ECoV in China, we collected 51 small intestinal samples from donkey foals with diarrhoea from a donkey farm in Shandong Province, China between August 2020 and April 2021. Two samples tested positive for ECoV and full-length genome sequences were successfully obtained using next-generation sequencing, one of which was further confirmed by Sanger sequencing. The two strains shared 100% sequence identity at the scale of whole genome. Bioinformatics analyses further showed that the two Chinese strains represent a novel genetic variant of ECoV and shared the highest sequence identity of 97.05% with the first identified ECoV strain - NC99. In addition, it may be a recombinant, with the recombination region around the NS2 gene. To our knowledge, this is the first documented report of ECoV in China, highlighting its risk to horse/donkey breeding. In addition, its potential risk to public health also warrants further investigation.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Doenças dos Cavalos , Animais , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Equidae , Doenças dos Cavalos/epidemiologia , Cavalos , Filogenia
12.
ACS Nano ; 16(2): 2629-2639, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: covidwho-1634583

RESUMO

Population-wide surveillance of COVID-19 requires tests to be quick and accurate to minimize community transmissions. The detection of breath volatile organic compounds presents a promising option for COVID-19 surveillance but is currently limited by bulky instrumentation and inflexible analysis protocol. Here, we design a hand-held surface-enhanced Raman scattering-based breathalyzer to identify COVID-19 infected individuals in under 5 min, achieving >95% sensitivity and specificity across 501 participants regardless of their displayed symptoms. Our SERS-based breathalyzer harnesses key variations in vibrational fingerprints arising from interactions between breath metabolites and multiple molecular receptors to establish a robust partial least-squares discriminant analysis model for high throughput classifications. Crucially, spectral regions influencing classification show strong corroboration with reported potential COVID-19 breath biomarkers, both through experiment and in silico. Our strategy strives to spur the development of next-generation, noninvasive human breath diagnostic toolkits tailored for mass screening purposes.


Assuntos
COVID-19 , Humanos , Programas de Rastreamento , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2 , Análise Espectral Raman/métodos
13.
Front Microbiol ; 12: 770656, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1518506

RESUMO

In the past two decades, coronavirus (CoV) has emerged frequently in the population. Three CoVs (SARS-CoV, MERS-CoV, SARS-CoV-2) have been identified as highly pathogenic human coronaviruses (HP-hCoVs). Particularly, the ongoing COVID-19 pandemic caused by SARS-CoV-2 warns that HP-hCoVs present a high risk to human health. Like other viruses, HP-hCoVs interact with their host cells in sophisticated manners for infection and pathogenesis. Here, we reviewed the current knowledge about the interference of HP-hCoVs in multiple cellular processes and their impacts on viral infection. HP-hCoVs employed various strategies to suppress and evade from immune response, including shielding viral RNA from recognition by pattern recognition receptors (PRRs), impairing IFN-I production, blocking the downstream pathways of IFN-I, and other evasion strategies. This summary provides a comprehensive view of the interplay between HP-hCoVs and the host cells, which is helpful to understand the mechanism of viral pathogenesis and develop antiviral therapies.

14.
Transbound Emerg Dis ; 69(2): 632-644, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1070628

RESUMO

The variety and widespread of coronavirus in natural reservoir animals is likely to cause epidemics via interspecific transmission, which has attracted much attention due to frequent coronavirus epidemics in recent decades. Birds are natural reservoir of various viruses, but the existence of coronaviruses in wild birds in central China has been barely studied. Some bird coronaviruses belong to the genus of Deltacoronavirus. To explore the diversity of bird deltacoronaviruses in central China, we tested faecal samples from 415 wild birds in Hunan Province, China. By RT-PCR detection, we identified eight samples positive for deltacoronaviruses which were all from common magpies, and in four of them, we successfully amplified complete deltacoronavirus genomes distinct from currently known deltacoronavirus, indicating four novel deltacoronavirus stains (HNU1-1, HNU1-2, HNU2 and HNU3). Comparative analysis on the four genomic sequences showed that these novel magpie deltacoronaviruses shared three different S genes among which the S genes of HNU1-1 and HNU1-2 showed 93.8% amino acid (aa) identity to that of thrush coronavirus HKU12, HNU2 S showed 71.9% aa identity to that of White-eye coronavirus HKU16, and HNU3 S showed 72.4% aa identity to that of sparrow coronavirus HKU17. Recombination analysis showed that frequent recombination events of the S genes occurred among these deltacoronavirus strains. Two novel putative cleavage sites separating the non-structural proteins in the HNU coronaviruses were found. Bayesian phylogeographic analysis showed that the south coast of China might be a potential origin of bird deltacoronaviruses existing in inland China. In summary, these results suggest that common magpie in China carries diverse deltacoronaviruses with novel genomic features, indicating an important source of environmental coronaviruses closed to human communities, which may provide key information for prevention and control of future coronavirus epidemics.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Teorema de Bayes , Aves , China/epidemiologia , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Deltacoronavirus , Filogenia
15.
Virus Res ; 295: 198307, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1032672

RESUMO

Bats carry diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). The suspected interspecies transmission of SARSr-CoVs from bats to humans has caused two severe CoV pandemics, the SARS pandemic in 2003 and the recent COVID-19 pandemic. The receptor utilization of SARSr-CoV plays the key role in determining the host range and the interspecies transmission ability of the virus. Both SARS-CoV and SARS-CoV-2 use angiotensin-converting enzyme 2 (ACE2) as their receptor. Previous studies showed that WIV1 strain, the first living coronavirus isolated from bat using ACE2 as its receptor, is the prototype of SARS-CoV. The receptor-binding domain (RBD) in the spike protein (S) of SARS-CoV and WIV1 is responsible for ACE2 binding and medicates the viral entry. Comparing to SARS-CoV, WIV1 has three distinct amino acid residues (442, 472, and 487) in its RBD. This study aimed at exploring whether these three residues could alter the receptor utilization of SARSr-CoVs. We replaced the three residues in SARS-CoV (BJ01 strain) S with their counterparts in WIV1 S, and then evaluated the change of their utilization of bat, civet, and human ACE2s using a lentivirus-based pseudovirus infection system. To further validate the S-ACE2 interactions, the binding affinity between the RBDs of these S proteins and the three ACE2s were verified by flow cytometry. The results showed that the single amino acid substitution Y442S in the RBD of BJ01 S enhanced its utilization of bat ACE2 and its binding affinity to bat ACE2. On the contrary, the reverse substitution in WIV1 S (S442Y) significantly attenuated the pseudovirus utilization of bat, civet and human ACE2s for cell entry, and reduced its binding affinity with the three ACE2s. These results suggest that the S442 is critical for WIV1 adapting to bats as its natural hosts. These findings will enhance our understanding of host adaptations and cross-species infections of coronaviruses, contributing to the prediction and prevention of coronavirus epidemics.


Assuntos
Enzima de Conversão de Angiotensina 2/fisiologia , COVID-19/transmissão , Quirópteros/virologia , Especificidade de Hospedeiro , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Animais , Sítios de Ligação , Células Cultivadas , Humanos , Internalização do Vírus , Viverridae/virologia
17.
Sustain Cities Soc ; 63: 102466, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-733629

RESUMO

The novel human coronavirus (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) pandemic worldwide. Control of COVID-19 pandemic is vital for public health and is the prerequisite to maintain social stability. However, the origin and transmission route of SARS-CoV-2 is unclear, bringing huge difficult to virus control. Monitoring viral variation and screening functional mutation sites are crucial for prevention and control of infectious diseases. In this study, we developed a user-friendly software, named BioAider, for quick sequence annotation and mutation analysis on large-scale genome-sequencing data. Herein, we detected 14 substitution hotspots within 3,240 SARS-CoV-2 genome sequences, including 3 groups of potentially linked substitution. NSP13-Y541C was crucial substitution which might affect the unwinding activity of the viral helicase. In particular, we discovered a SR-rich region of SARS-CoV-2 distinct from SARS-CoV, indicating more complex replication mechanism and unique N-M interaction of SARS-CoV-2. Interestingly, the quantity of SSRX repeat fragments in SARS-CoV-2 provided further evidence of its animal origin. Overall, we developed an efficient tool for rapid identification of viral genome mutations which could facilitate viral genomic studies. Using this tool, we have found critical clues for the transmission route of SARS-CoV-2 which would provide theoretical support for the epidemic control of pathogenic coronaviruses.

18.
Transbound Emerg Dis ; 68(3): 1046-1053, 2021 May.
Artigo em Inglês | MEDLINE | ID: covidwho-721165

RESUMO

Coronavirus (CoV) pandemics have become a huge threat to the public health worldwide in the recent decades. Typically, severe acute respiratory syndrome CoV (SARS-CoV) caused SARS pandemic in 2003 and SARS-CoV-2 caused the ongoing COVID-19 pandemic. Both viruses are most likely originated from bats. Thus, direct or indirect inter-species transmission from bats to humans is required for the viruses to cause pandemics. Receptor utilization is a key factor determining the host range of viruses which is critical to the inter-species transmission. Angiotensin-converting enzyme 2 (ACE2) is the receptor of both SARS-CoV and SARS-CoV-2, but only ACE2s of certain animals can be utilized by the viruses. Here, we employed pseudovirus cell-entry assay to evaluate the receptor-utilizing capability of ACE2s of 20 animals by the two viruses and found that SARS-CoV-2 utilized less ACE2s than SARS-CoV, indicating a narrower host range of SARS-CoV-2. Especially, SARS-CoV-2 tended not to use murine or non-mammal ACE2s. Meanwhile, pangolin-CoV, another SARS-related coronavirus highly homologous to SARS-CoV-2 in its genome, yet showed similar ACE2 utilization profile with SARS-CoV rather than SARS-CoV-2. Nevertheless, the actual susceptibility of these animals to the coronaviruses should be further verified by in vivo studies. To clarify the mechanism underlying the receptor utilization, we compared the amino acid sequences of the 20 ACE2s and found 5 amino acid residues potentially critical for ACE2 utilization, including the N-terminal 20th and 42nd amino acid residues that might determine the different receptor utilization of SARS-CoV, SARS-CoV-2 and pangolin-CoV. Our studies enhance the understanding of receptor utilization of pandemic coronaviruses, potentially contributing to the virus tracing, intermediate host screening and epidemic prevention for pathogenic coronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Especificidade de Hospedeiro , SARS-CoV-2/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/epidemiologia , Humanos , Pandemias , Internalização do Vírus
19.
Sustain Cities Soc ; 61: 102413, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-663693

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed a significant impact on social and economic activities. As a high infectious pathogen, the existence of SARS-CoV-2 in public space is very important for its transmission. During the COVID-19 pandemic, hospitals are the main places to deal with the diseases. In this work, we evaluated the exposure risk of SARS-CoV-2 in hospital environment in order to protect healthcare workers (HCWs). Briefly, air and surface samples from 6 different sites of 3 hospitals with different protection levels were collected and tested for the SARS-CoV-2 nucleic acid by reverse transcription real-time fluorescence PCR method during the COVID-19 epidemic. We found that the positive rate of SARS-CoV-2 nucleic acid was 7.7 % in a COVID-19 respiratory investigation wards and 82.6 % in a ICUs with confirmed COVID-19 patients. These results indicated that in some wards of the hospital, such as ICUs occupied by COVID-19 patients, the nucleic acid of SARS-CoV-2 existed in the air and surface, which indicates the potential occupational exposure risk of HCWs. This study has clarified retention of SARS-CoV-2 in different sites of hospital, suggesting that it is necessary to monitor and disinfect the SARS-CoV-2 in hospital environment during COVID-19 pandemic, and will help to prevent the iatrogenic infection and nosocomial transmission of SARS-CoV-2 and to better protect the HCWs.

20.
Microbes Infect ; 22(4-5): 221-225, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-627037

RESUMO

SARS-CoV-2, the newly identified human coronavirus causing severe pneumonia pandemic, was probably originated from Chinese horseshoe bats. However, direct transmission of the virus from bats to humans is unlikely due to lack of direct contact, implying the existence of unknown intermediate hosts. Angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2s of certain species can be utilized by SARS-CoV-2. Here, we evaluated and ranked the receptor-utilizing capability of ACE2s from various species by phylogenetic clustering and sequence alignment with the currently known ACE2s utilized by SARS-CoV-2. As a result, we predicted that SARS-CoV-2 tends to utilize ACE2s of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2.


Assuntos
Betacoronavirus/metabolismo , Aves/metabolismo , Infecções por Coronavirus/virologia , Mamíferos/metabolismo , Peptidil Dipeptidase A/genética , Pneumonia Viral/virologia , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Humanos , Pandemias , Filogenia , Conformação Proteica , SARS-CoV-2 , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA